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ABSTRACT: Recent advances in synthetic biology have equipped
us with new tools for bioprocess optimization at the genetic level.
Previously, we have presented an integrated in silico design for the
dynamic control of gene expression based on a density-sensing unit
and a genetic toggle switch. In the present paper, analysis of a serine-
producing Escherichia coli mutant shows that an instantaneous ON-
OFF switch leads to a maximum theoretical productivity improve-
ment of 29.6% compared to the mutant. To further the design,
global sensitivity analysis is applied here to a mathematical model of
serine production in E. coli coupled with a genetic circuit. The model
of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on
serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key
parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the
experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic
circuit components.
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Genetic engineering techniques have equipped metabolic
engineers with a plethora of tools for gene deletion,

overexpression of endogenous and expression of heterologous
genes, and more recently, control of gene expression and
modification of regulatory networks.1,2 In parallel, genome-scale
reconstructions of metabolic networks and constraint-based
modeling have elucidated cell physiology and guided
hypothesis-driven discovery in a systematic way. The systematic
exploration of the feasible designs of metabolic networks would
be impossible without the establishment of genome-scale
modeling.3

Many computational strain design algorithms based on
constraint-based modeling are aimed at the maximization of
product yield.4 OptKnock and OptReg were the first algorithms
to identify gene deletions, overexpression and downregulation
for improved product formation.5,6 Also, a local search
approach was developed to allow for more modifications than
OptKnock.7 More recently, new algorithms such as OptForce
and EMILiO capable of predicting optimal flux levels for
maximum production have been developed.8,9 The objective of
these strain design algorithms is to maximize product yield,
which typically comes at the expense of lower growth rate and
process productivity. The trade-off between yield and
productivity suggests that dynamic optimization is essential.
Several dynamic optimization methods have been applied to

determine the optimal control profile of fed-batch reactors.10

These studies are limited to simple phenomenological models

of bacterial growth and substrate/product inhibition. With the
development of genome-scale networks, comprehensive models
of metabolism have extended the understanding and predictive
capability from the bioreactor to the genetic level.11,12 Dynamic
flux balance analysis (dFBA) has been used in the past to
predict fed-batch operating policies in S. cerevisiae13 and optimal
genetic manipulations for ethanol production in E. coli.14,15

Gadkar et al. showed that when gene deletions cause growth
impairment, it is optimal to dynamically control gene
expression instead, with a bang−bang type of control16 (i.e.,
an abrupt switch between two states). The optimal ON-OFF
policy deploys an initial high growth rate phase followed by a
high production phase.14 The means to implement this strategy
may be found in the area of synthetic biology.
In synthetic biology, genetic constructs are engineered and

coupled with the natural genetic machinery in order to
reprogram the cellular processes.17−19 Genetic devices can be
thought of as the analogues of electronic parts such as sensors,
switches, logic operators, and actuators that perform specific
tasks at different stages of the gene expression process.20

Genetic engineering has provided us with regulatory parts such
as promoters, ribosome binding sites, riboswitches, and RNA
regulators to control gene expression at the transcription21−23
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and post-transcription/translation stage.24−29 Natural quorum
sensing systems have been coupled with genetic devices to
perform novel cellular tasks30−32 and reengineered to induce
expression of recombinant proteins.33 Also, properties such as
specificity and sensitivity to the inputs of the quorum sensing
system have been altered to create a series of LuxR variants
with different responses.34,35

Anesiadis et al.36 proposed a modular genetic circuit design
similar to that of Kobayashi et al.30 to couple a natural quorum
sensing module and the genetic toggle switch37 to bacterial
metabolism. The objective of the integrated genetic circuit is to
implement density-dependent expression of genes contributing
to growth in the optimal ON-OFF fashion suggested by Gadkar
et al. This process utilizes a programmable synthetic feedback
loop without the need for external inducer and monitoring (see
Figure 1 and Methods section for more details).

Mathematical modeling can play a significant role in the
design and engineering of synthetic biology elements. The
complexity emerging from the hierarchical structure of
biochemical networks, the connectivity and interactions
between the components, and the nonlinear and stochastic
nature of biochemical processes all can be elucidated to a
certain degree with mathematical models.38−42 Computational
models can provide us with in silico experiments to explore
different behaviors over a range of conditions and identify
correlations between the parameters. Notwithstanding, model
uncertainty is an inherent attribute of mathematical models and
therefore analyzing the impact of this uncertainty is crucial for
the design of meaningful experiments.43−46 Global sensitivity
analysis (GSA) methods are typically applied first in the
modeling building cycle presented in Kiparissides et al. to
quantify the significance of the parameters on an output of the

model.47 Sensitivity analysis has provided in depth insights in
the design of experiments for the optimization of genetic
circuits,48,49 RNA devices,26 signaling pathways,50,51 bioreme-
diation applications,52,53 stem cell differentiation,54 and anti-
body production.55,56

So far, in our work we have presented the initial circuit
design for an ethanol and succinate case study,36 and we have
performed a preliminary sensitivity analysis in a shorter paper.57

The effect of the genetic circuit parameters on the important
process variables such as productivity, yield, and batch time,
along with determining a recommended operating range for the
key design parameters, has not been explored yet and is the
focus of this paper.
We begin here by developing a dFBA model of a serine-

producing E. coli mutant predicted by the EMILiO algorithm.9

Then, we show that by allowing the fluxes of the deleted genes
to be manipulated in an ideal ON-OFF fashion, the
productivity can be improved and the batch time decreased.
After coupling the genetic circuit to the bacterial metabolism
using nominal parameter values from the literature, global
sensitivity analysis is applied to quantify the effect of circuit
parameters on serine concentration. On the basis of the GSA
results, we then investigate how the most important parameters
impact bioprocess objectives (such as productivity, yield, and
titer), batch time, and switching time of the toggle. This
analysis allows us to identify the parameter space that satisfies
targets, along with gaining a better understanding of the
bistability and the switching time of the integrated circuit. We
believe that this work now sets the stage for the experimental
implementation of this metabolic engineering strategy.

■ RESULTS AND DISCUSSION
Strain Design and Static Strategy. First, we designed a

serine-producing E. coli strain using the EMILiO algorithm.9

The EMILiO algorithm was used with a minimum growth rate
constraint of 0.4/h. The strain design involves a total of 10
modifications: three gene deletions and seven fine-tuned fluxes.
The gene deletions include the reactions of acetaldehyde
dehydrogenase (ACALD), L-serine dehydrogenase
(LSERDHr), and L-serine deaminase (SERDL). The fine-
tuned fluxes include the phosphoglycerate dehydrogenase
(PGCD), phosphotransacetylase (PTAr), acetyl-CoA synthe-
tase (ACS), methylenetetrahydrofolate (MTHFD), pyruvate
dehydrogenase (PDH), pyruvate formate lyase (PFL), and
tryptophanase (TRPAS2). The values of the fine-tuned fluxes
are given in the Supporting Information.
The production envelope of the modifications mentioned

above is shown in Figure 2. The growth rate and serine flux
obtained for the baseline strain with fine-tuned fluxes (A) and
the mutant (B) is shown in Table 1. The higher serine
production is associated with lower growth rate (i.e., 0.4
compared to 0.75/h). This makes the dynamic control of gene
expression a favorable method for optimizing productivity.
As a baseline for our comparison we use the static strategy,

which is essentially the mutant strain grown in a batch reactor.
The mutant strain is expected to have the longest batch time,
since the maximum growth rate is 0.4/h. The batch is simulated
using the dynamic flux balance formulation (dFBA) with 20
mM of initial glucose, the three genes knocked out, and the
seven fluxes fixed at their optimal values. The dynamic profile
of the static strategy (Supplementary Figure SI.1) results in a
serine titer of 26.1 mM and batch time of 11.2 h. On the basis
of these values, we can estimate the values for the three

Figure 1. The genetic circuit consists of the sensor and the genetic
controller plasmids (with genes sda, ydf G, and mhpF controlling the
fluxes of ACALD and LSERDHr in the toggle switch). The most
significant parameters as identified by the global sensitivity analysis are
highlighted in bold (αC, γC, and LuxR concentration).
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objectives: productivity, yield, and titer in Table 2, where we
compare them with the dynamic strategy in the following
section.

Ideal Dynamic Strategy. In the ideal dynamic strategy, we
assume that the fluxes of the genes being knocked out have the
same values as the wild-type initially and then go to zero when
turned off (inset in Figure 3A). The fine-tuned fluxes remain at
their optimal level. The ideal dynamic strategy refers to the
perfect ON-OFF control, since we assume that the fluxes go to
zero instantaneously. In practice, this is not realistic because (i)
gene repression is a process that happens on the order of
minutes to hours and (ii) even after the gene is repressed, the
proteins present will catalyze the reaction before they degrade.
However, the instantaneous ON-OFF control serves as a basis
of comparison for the dynamic strategy. The dynamics of this
switch are very important for the optimization of the process
and will be studied in the following section.
Here, we define the switching time (tS) as the time at which

the switch from the ON to the OFF state occurs (the switching
time should not be confused with the duration or the dynamics
of the switch). In the ideal dynamic strategy, we consider the

switching time to be the manipulated independent (input)
variable. Serine concentration and batch time are the
dependent (output) variables since they are a function of the
switching time. These outputs in turn define the values of the
three bioprocess objectives, namely, productivity, yield, and
titer shown in Figure 3A, B, and C, respectively. Here, notice
that for the two extreme values of the switching time tS, we have
the batch equivalent to the mutant if tS = 0 and batch equivalent
to the wild-type if tS is greater than 6.5 h (Figure 3A). Also, the
greater the switching time, the more biomass and less serine is
generated (all lines in Figure 3 flatten out after 6.5 h, indicating
that if the switch does not occur within the first 6.5 h, the
glucose is consumed within 6.5 h and the batch time is 6.5 h).
Therefore, the yield and titer of the dynamic strategy is always
lower than the static strategy, i.e., the mutant or tS = 0 (Figure
3B and C). However, the trade-off between biomass and
product leads to a maximum productivity of 3.02 mM serine/h,
which is 29.6% higher than the static strategy (2.33 mM serine/
h). The increase in productivity comes as a result of the
decrease in the batch time, since we generate biomass at a faster
rate initially. The maximum in productivity and the associated
batch time in the optimum productivity region are emphasized
in the boxed areas. Note that if we want to keep the yield and
titer high, we should apply a switching time that is below the
optimal value (approximately 4 h), because if we apply a
switching time less than 4 h, we can still improve the
productivity, while keeping yield and titer high.

Dynamic Strategy. In the dynamic strategy, the genetic
circuit (eqs 7−10 in the Methods section) determines the
switching time. The manipulated genes and cI are in the ON
state, resulting in high growth rate and consequently
production and accumulation of AHL. When the concentration
of AHL reaches a critical threshold the LuxR-AHL dimer
formed initiates transcription of gene lacI. The production of
the protein repressor from lacI leads to the repression of the
manipulated genes and cI. In this section, we apply the dynamic
strategy with the nominal literature values of the genetic circuit
(Supplementary Figure SI.2).
The three gene deletions of the initial strain design are

candidates for the dynamic gene expression. Out of the three
deletions only ACALD and LSERDHr have a significant impact
on growth and are therefore placed under the control of the

Figure 2. Production envelope of E. coli strain design predicted by
EMILiO. The baseline strain includes 7 fine-tuned fluxes (A). The
serine-producing strain includes 3 knockouts and 7 fine-tuned fluxes
(B).

Table 1. Growth Rate and Serine Flux under Aerobic
Conditions for Glucose Uptake Rate of 10 mmol/gDW/h
from Flux Balance Analysis

growth rate
(h−1)

serine flux
(mmol/gDW/h)

7 fixed fluxes 0.75 2.7
3 knockouts + 7 fixed fluxes 0.4 12.9

Table 2. Comparison of Objective Function Values for
Static, Ideal Dynamic, and Dynamic Strategiesa

static
strategy

ideal dynamic
strategy

dynamic
strategy

productivity (mM serine/h) 2.33 3.02 2.99
yield (mM serine/mM glucose) 1.30 1.21 1.14
serine titer (mM) 26.1 24.2 22.7
batch time (h) 11.2 8.1 7.8

aThe dynamic strategy is based on the nominal parameter values of
the genetic circuit. The maximum values of productivity and yield are
in bold.

Figure 3. Productivity (A), yield (B), serine titer (C), and batch time
(D) as a function of the switching time. The maximum theoretical
productivity is approximately 29.6% higher than the static strategy (i.e.,
switching time = 0). The inset in panel A refers to a flux profile
corresponding to a switching time of 4 h.
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genetic circuit (genes sda, ydf G, and mhpF shown in Figure 1).
The flux of SERDL has little impact on growth and therefore
the gene associated is deleted.
As seen in Supplementary Figure SI.2, ACALD and

LSERDHr fluxes start decreasing after approximately 4 h and
are turned off completely after approximately 1 h. Similarly,
Gardner et al. showed that turning off gene expression in the
toggle switch is completed within less than 1 h.37 The growth
rate drops from 0.75 to 0.4/h, and glucose is fully consumed in
7.8 h (in comparison, it took 11.2 h with the static strategy).
The objective values of the dynamic strategy for the nominal
genetic circuit parameter values and the optimal ideal ON-OFF
control are shown in Table 2.
Even without any optimization of the parameters associated

with the genetic circuit, we notice a significant increase in the
productivity of approximately 28.3% (2.99 vs 2.33 mM serine/
h). This suggests that the initial implementation of the dynamic
strategy comes very close to the maximum theoretical
performance. Notice that the increase in productivity comes
at the expense of lower yield and titer compared to the static
strategy.
Global sensitivity analysis is applied in the next section to

determine which parameters of the genetic circuit have the
greatest impact on the performance of the dynamic strategy,
i.e., serine productivity.
Global Sensitivity Analysis. The dynamic strategy

simulated in the previous section contains many parameters
associated with the quorum sensing and the toggle switch that
enter the model in a highly nonlinear, interacting way. With fast
simulations of dFBA problems, we can perform in silico
experiments to study the effect of these parameters on the
outputs of interest. Here, we use global sensitivity analysis to
study the effect of these parameters on the initial flux levels, the
switching time, the duration of the switch, and in turn the
bioengineering objectives. The switching time, tS, associated
with the dynamic strategy is defined here as the time at which
the manipulated fluxes reach 5% of their initial values and is
seen to be approximately 5 h in Supplementary Figure SI.2C.
In Figure 4, we show the total, interaction, and individual

sensitivity indices of the most significant parameters of the

genetic circuit with respect to serine concentration over time.
Out of 13 parameters, only 3 were found to have an average
total sensitivity index higher than 0.1, namely, the toggle switch
parameters γC and αC and the quorum sensing parameter LuxR
(average total sensitivity indices of approximately 0.54, 0.35,
and 0.10, respectively). This result suggests that the process can
be optimized by focusing on these three parameters, while the
rest of the parameters are fixed at their nominal values.
Interestingly, parameters αL and γL of the genetic circuit have

negligible sensitivity indices. In contrast, the toggle switch alone
is a symmetric circuit, and previous analysis showed that high
production and degradation rates of both genes (i.e., high αC,
αL, γC, and γL) favor a robust and stable switch.37 Here, analysis
of the integrated circuit indicates high sensitivity of the cI
component of the toggle (i.e., αC and γC) and parameter LuxR
of the quorum sensing, but insignificant sensitivity to
parameters αL and γL. The reason is that the integrated circuit
is not symmetric and the quorum sensing induces lacI
independently of the toggle switch.
The interaction indices are very significant for all 3 of these

key parameters as they account for an average of 58%, 83%, and
93% of the total sensitivities, respectively. However, the analysis
used here does not estimate the individual interactions between
parameters (i.e., second, third-order effects etc.) but only the
total interaction effects. Also, the global sensitivity analysis does
not provide the direction of the parameter effect (e.g., whether
an increase or decrease in γC leads to an increase or decrease in
the productivity). Therefore, in order to investigate the
interaction effects further, we explore the effects of changing
two and three parameters at a time in the following sections.

Effect of αC and γC. Figure 5A shows that the productivity
of the dynamic strategy is higher than the static (flat surface
shown for comparison) over a wide range of the αC−γC
parameter space. Productivity exhibits a maximum plateau,
which broadens with increased values of αC and γC. A wide
plateau is desirable as it ensures robustness of the design. The
value of productivity within the plateau is between 2.95 and 3
mM serine/h, which is approximately 27−29.6% higher than
the static strategy (in comparison, the ideal ON-OFF controller
has a maximum productivity of 3.02 mM serine/h, Table 2).
In Figure 5B and C, yield and titer are always lower than the

static strategy as a consequence of the initial growth phase and
tend toward the static strategy for high γC and low αC values
since this leads to genes being turned off and cells growing as
mutants (OFF state). At this extreme, productivity also tends
toward the value of the static strategy. At the other extreme,
gene expression stays in the ON state throughout the batch for
high αC and low γC values, resulting in wild-type cells (ON
state) where the objectives values are at their minima.
Figure 5D illustrates the effect of the parameters on the batch

and switching time. High γC and low αC values result in zero
switching time (i.e., a monostable OFF state switch, since the
toggle is always in the OFF state). In this region, the batch is
equivalent to the mutant, and the objective values tend to the
values of the static strategy. At the other extreme, high αC and
low γC values result in the switching time being equal to the
batch time (i.e., a monostable ON state switch, since the toggle
is in the ON state throughout the course of the batch). In this
region, the batch is equivalent to the wild-type and the
objectives values are at their minima. For values between the
two extremes, there is a third region where the switching time is
between 4 and 6.5 h. In this region, the toggle switches between
the ON and the OFF state, resulting in what is referred to as a

Figure 4. Sensitivity indices of parameters γC (A), αC (B), and LuxR
(C) for serine concentration. Total (ST), interaction (Inter.) and
individual (Indiv.) indices are shown. The ranges refer to sensitivity
values obtained every hour over the batch. Note that the variation of
the sensitivity indices across time is not significant. The boxes show
the lower quartile, the median, and the upper quartile values. The
whiskers represent 1.5 times the interquartile range.
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bistable switch. The area of the bistability increases with

increased values of αC and γC. In most of the bistable region the

switching time is approximately 4 h and increases rapidly to 6.5

h when γC decreases, whereas αC does not affect the switching

time significantly.

To support the conditions for bistability of the toggle,
Gardner37 and Kobayashi30 demonstrated that strong pro-
moters (i.e., high αC) and high degradation rates (i.e., high γC)
increase the size of the bistable region. This result was derived
based on phase-plane analysis of a mechanistic toggle switch
model and was also tested in a number of plasmids with

Figure 5. Effect of αC−γC on productivity (A), yield (B), titer (C), and batch and switching time (D). The blue point shows the nominal values of
parameters αC and γC. The flat surface in panel A shows the productivity of the static strategy.

Figure 6. Effect of αC−LuxR on productivity (A), yield (B), titer (C), and batch and switching time (D). The blue point shows the nominal values of
parameters αC and LuxR.

Figure 7. Effect of γC−LuxR on productivity (A), yield (B), titer (C), and batch and switching time (D). The blue point shows the nominal values of
parameters γC and LuxR.
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different promoter strengths. In addition, protein degradation
tags were used in the plasmids to increase protein degradation
rates.
Effect of αC and LuxR. Similarly, the productivity of the

dynamic strategy is higher than the static in most of the αC−
LuxR parameter space (Figure 6A). The maximum value in the
plateau converges to the maximum productivity of the ideal
ON-OFF controller (i.e., 3.02 mM serine/h). However, the
maximum plateau when varying these two parameters is narrow
(in contrast to the αC−γC parameter space). The shape of the
plateau suggests that fine-tuning of parameter LuxR is crucial to
ensure maximum productivity.
Figure 6D reveals how parameter LuxR affects the batch and

the switching time. The switching time (lower curve) depends
primarily on parameter LuxR. Switching time ranges from zero
for high LuxR values (i.e., approaching the static strategy, where
the manipulated genes are turned off immediately) to the total
batch time for small LuxR values (thus resulting in the other
extreme, cells operating in the ON state throughout the batch).
Similar features are observed in the two extreme operating
points for yield and titer (Figure 6B and C). The process
approaches the static strategy for high LuxR values and as a
result yield and titer converge to their maximum values.
Effect of γC and LuxR. In Figure 7A, the productivity of the

dynamic strategy is again higher than the static in most of the
γC-LuxR parameter space and the maximum productivity
converges to the value of the ideal ON-OFF controller (3
mM serine/h). The plateau is narrow, similarly to the αC-LuxR
space, however in this case both γC and LuxR seem to affect the
productivity (in contrast to the previous pair of parameters
where LuxR mostly affected productivity). Productivity is
favored by either high LuxR−low γC, or low LuxR−high γC
values.
The effect of parameters γC and LuxR on the batch and the

switching time is elucidated in Figure 7D (notice that the axes
direction is reversed). Here, both γC and LuxR affect the
switching time, in contrast with the previous pair of parameters
where αC did not affect the switching time. This implies that the
interaction between parameters γC and LuxR is strong. High
values of γC and LuxR lead to an instantaneous switch, and the
values of the objectives tend toward the static strategy values.
At the other extreme, gene expression remains in the ON state

throughout the batch for low values of γC and LuxR, resulting in
wild-type cells and minimum objective values.

Summary of the Effects of Changing Two Parameters
at a Time. Considering the objective surfaces in Figure 5,
values of αC and γC must be chosen to ensure that the
productivity lies in the optimal plateau region. To achieve
balanced productivity and yield, high γC and low αC over the
plateau are desired (i.e., values that correspond to the left side
of the plateau shown in Figure 5A). High αC values increase the
optimal plateau area. However, very strong promoters could
lead to low growth rate due to increased metabolic burden
associated with the genetic circuit and should be avoided.
The analysis also suggests that LuxR concentration can be

manipulated to fine-tune the switching time (Figure 6). The
engineering of LuxR promoters and design of synthetic
ribosome binding sites (RBS) can be used to modify the
value of LuxR concentration.24,34 We also showed that
parameter LuxR strongly interacts with γC (Figure 7) and
that they both affect the switching time. Therefore, switching
time is sensitive with respect to parameters LuxR and γC.
Up to this point, we have identified the three most influential

parameters, the interactions between them in a pairwise
manner, and how they affect the key features of the dynamic
strategy, namely, the bistability of the toggle and the switching
time. Parameters αC and γC affect the bistability of the toggle
switch, and the design of the integrated circuit must guarantee
that the circuit is bistable. Parameters γC and LuxR strongly
influence the switching time in a synergistic way, and therefore
fine-tuning of the switching time is possible. In the next section,
the objective of the analysis is to determine the final parameter
region that satisfies the yield and productivity targets.

Effect of All Three Parameters. To visualize the effect of
all three parameters when varied at the same time, we
generated the isosurface plots of productivity and yield with
respect to parameters αC, γC, and LuxR (Supplementary Figures
SI.3 and SI.4, respectively). The volume of the isosurface shows
the solution space that satisfies targets, and it increases as we
relax the target values. Supplementary Figure SI.3 shows that
high αC and γC values are increasing the solution space of the
strategy as indicated by the increased volume of the plot in the
high αC and γC region (in agreement with Figure 5). Second,
the shape of the volume demonstrates the outcome of Figure 7
that either high LuxR−low γC or low LuxR−high γC values are

Figure 8. Effect of αC−γC−LuxR on productivity and yield. Isosurfaces are shown for values of productivity higher than 2.9 and 2.8 mM serine/h and
yield higher than 1.2 and 1.1 mM serine/mM glucose.
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optimal for productivity. The same result is observed in
Supplementary Figure SI.3, where we can isolate two
subvolumes of maximum productivity: one for high LuxR and
low γC and one for low LuxR and high γC values. Considering
the effect of the parameters on the yield of the process
(Supplementary Figure SI.4) allows us to prune the optimal
parameter space. The maximum yield volume is located at the
tip of the parameter cube, for low αC and high γC and LuxR
values, which leans toward the static strategy.
In Figure 8, we overlap the two volumes for decreasing levels

of productivity and yield to identify regions in the parameter
space where the target values indicated are satisfied. In Figure
8A, the targets for productivity and yield are very high (i.e., 2.9
mM serine/h and 1.2 mM serine/mM glucose, respectively),
and the volume in the parameter space to achieve these
thresholds is a thin horizontal slice that lies between values of
LuxR of 0.5 and 1.5 μM. The shape of the volume indicates that
in order to achieve the highest values for productivity and yield,
fine-tuning of LuxR concentration is crucial.
Next, the target for productivity is relaxed to 2.8 mM serine/

h (Figure 8B). The volume lies between LuxR values of 0.5 and
2.5 μM in most of the parameter space, which supports the
outcome of Figure 8A that tight regulation of LuxR between 0.5
and 1.5 μM can lead to the highest values of productivity and
yield. Another interesting feature here is the growth of a
subvolume toward higher LuxR values for low γC. This is also
observed when the yield target is reduced to 1.1 mM serine/
mM glucose (Figure 8C) and when both productivity and yield
are reduced to 2.8 mM serine/h and 1.1 mM serine/mM
glucose, respectively (Figure 8D). The subvolume for low γC
and LuxR > 2 values is less robust than the horizontal
subvolume, since it requires tight fine-tuning of both αC (0.4 to
10 μM/min) and γC (1−2/min). This implies that operating in
this subvolume could potentially cause loss of the bistability if
αC and γC are not tuned precisely. Therefore, it is
recommended that the operating volume be chosen as the
volume shown in Figure 8A.
Preliminary Design Considerations. The sensitivity-

based model analysis presented here has given us insight into
the design and optimization of the dynamic control strategy.
The results of the global sensitivity analysis were used to reduce
the model complexity by identifying a set of key parameters
(i.e., αC, γC, and LuxR) that have the greatest effect on serine
production. Furthermore, we have identified the ranges of the
key parameters that satisfy productivity and yield targets. In
order to design a stable and robust system that balances
productivity and yield, we need to identify an optimal operating
region. Considering the uncertainties associated with parameter
estimation and noise in gene expression, we believe that
proposing an operating region is more appropriate than
suggesting a single set of parameter values.
The key parameters can be adjusted using standard molecular

biology techniques. To this end, the protein synthesis rate
constant αC and the LuxR protein concentration can be
manipulated by designing synthetic ribosome binding sites.24

Manipulating LuxR concentration can be challenging, as the
protein degrades in the absence of AHL (reported half-time of
65 min58). The fast growth in the first phase will lead to AHL
production and formation of the slow-degrading LuxR-AHL
complex, which accumulates at high concentration.59 The
protein decay constant γC can be engineered either by using
degradation tags to reduce the half-life of the proteins60 or by
using temperature-sensitive mutants of the LacI.61

To summarize the effect of the main parameters, αC and γC
have their greatest effect on the bistability of the genetic circuit.
This result is in agreement with previously published model
analysis and experimental validation by Gardner et al. for the
toggle switch alone. The interaction between αC and γC does
not influence the switching time significantly. LuxR concen-
tration has a major impact on both the bistability of the switch
and the switching time. Specifically, when interacting with
parameter γC, the switching time depends strongly on both
LuxR and γC. In the last part of the analysis, changing all three
parameters simultaneously revealed that it if we use values of γC
and αC to ensure bistability of the switch, we can use LuxR to
manipulate the switching time of the circuit in order to achieve
high productivity and yield targets close to the maximum
theoretical values.
A final recommended range for LuxR is between 0.5 and 1.5

μM, with preference for values close to 1.5 to achieve higher
yield. To visualize the optimal parameter design space of αC and
γC, the top view of Figure 8A is shown in Figure 9. Parameter γC

must be at least 1.5/min to achieve the target yield and
productivity values. For increasing values of γC, the range of αC
also increases. Due to stochastic effects arising from tran-
scription and translation noise, individual cells will have slightly
different boundaries than Figure 9, and as a consequence
operating close to the boundaries will likely lead to lower
objective values. It has been previously shown that the toggle
switch is resistant to noise-induced transitions, and this is due
to the high transcription rates.37 Low transcription rates (i.e.,
αC) can result in spontaneous switching between the states.62,63

Hence, the recommended operating region is in the middle of
the optimal design space shown in Figure 9 aiming toward
higher values of αC and γC where the width of the optimal
design space increases. Nevertheless, very high values of both
parameters should be avoided because of the metabolic burden
associated with high expression (high values of αC and γC mean
high production rate and high degradation rate of proteins).
These results now set the stage for the experimental
implementation of the dynamic control strategy.

Conclusions. We have performed both analysis and design
of our integrated model of a genetic circuit coupled to bacterial
metabolism for the production of serine. By manipulating the
switching time of the ideal ON-OFF control, we showed that

Figure 9. Optimal parameter design space of αC and γC to achieve
productivity higher than 2.9 mM serine/h and yield higher than 1.2
mM serine/mM glucose. This figure is the top view of Figure 8A.
Values of LuxR of this volume are between 0.5 and 1.5 μM.
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the maximum theoretical productivity of the dynamic strategy is
29.6% higher than the static strategy, for an optimal switching
time of approximately 4 h. The initial design of the genetic
circuit was applied using parameter values from the literature
and it showed a 28.3% increase in productivity compared to the
static strategy, very close to the maximum theoretical
productivity. In order to explore the sensitivity of serine
concentration to the parameters of the genetic circuit, we
applied global sensitivity analysis (GSA) to identify the
parameters with the highest impact on serine concentration.
GSA identified three key parameters (i.e., αC, γC, and LuxR),
thus reducing model complexity and allowing for further
simulations to investigate the relationship between these
parameters and the bioengineering objectives. In turn, these
results have enabled us to identify the optimal parameter design
space required to operate the genetic circuit at both high
productivity and yield, setting the stage for experimental
implementation.

■ METHODS
Dynamic Flux Balance Analysis. Metabolism of E. coli

was modeled using the dynamic Flux Balance Analysis (dFBA)
framework.12 The dynamics of the quorum sensing and the
toggle switch are modeled using mechanistic equations.31,32

The coupling of bacterial metabolism to the genetic circuit is
captured in the third constraint of the FBA, with the
manipulated fluxes vC being proportional to the C concen-
tration (eq 4). A schematic description of the genetic circuit is
shown in Figure 1. The model is reproduced here for
completeness. In this model, AHL is assumed to diffuse freely
and its intracellular and extracellular concentrations are
assumed to be equal.64 For a detailed description refer to
Anesiadis et al.36,57
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The dFBA parameters include S, the stoichiometric matrix of
the reactions; vj, the flux j; v

product, the vector of product fluxes;
vgrowth, the growth rate; and vmin and vmax, the vectors of lower
and upper limits of the fluxes. The total number of metabolites
is M, the total number of fluxes is N, and the total number of
manipulated fluxes is U. Also, X is the biomass concentration,
and P is the product concentration. The genetic circuit variables
A, R, L, and C are the AHL, LuxR-AHL complex, LacI, and λCI
concentration, respectively. Parameter vA is the AHL
production rate constant, αL1, αL2, αC are the protein LacI
and λCI synthesis rate constants, βL and βC are the LacI and
λCI repression coefficients, γA, γR, γL, and γC are the AHL,
complex, LacI, and λCI protein decay constants, θR is the
complex activation coefficient, ρR is the complex dimerization
constant, and [LuxR] is the protein LuxR concentration.
Finally, the batch time (t0 − tf) is divided into f intervals of
length Ts equal to 0.05 h.
Although the majority of the quorum sensing systems shows

no cooperativity (e.g., the LuxR−AHL complex has a Hill
coefficient of 1), we used a Hill coefficient of 3 in eq 9. This
was done to achieve sharper dynamics, similar to the dynamics
reported by Gardner et al. Highly cooperative protein−DNA
interactions have been reported in the quorum sensing
regulator CepR of Burkholderia cenocepacia, and therefore a
Hill coefficient of 3 is realistic in an experimental context.65

The latest genome-scale model of E. coli metabolism,
iJO1366, was used in all simulations.66 The stoichiometry
matrix S of the model includes 2583 reactions and 1805
metabolites. The maximum glucose and oxygen uptake rate
used in the simulations is 10 and 20 mmol/gDW/h,
respectively. These values are typically used in FBA
simulations.66 The integration was performed using the
ode23s MATLAB solver (The Mathworks, Inc., Natick, MA)
over 12 h to ensure full consumption of the glucose for the
slowest growing case which is the knockout static strategy. The
LP problem was solved in MATLAB, using CPLEX 11.2 with
the CPLEXINT MATLAB interface. All simulations were run
on a Red Hat Enterprise Linux Server 5.8 with 8 hexa-core
AMD Opteron processors and 256 GB of RAM.

Global Sensitivity Analysis. Here we used the Sobol’
global sensitivity method for parameter ranking.67,47 This is a
variance-based Monte Carlo method that explores the
parameter space by changing all parameters simultaneously,
as opposed to local methods, and generates estimates of the
first-order, interaction and total sensitivities indices. Parameters
with a total sensitivity index less than 0.1 have negligible effect
on the output and can be fixed at their nominal values, whereas
parameters with higher indices have a significant impact on the
output.
Following Saltelli’s implementation, two random matrices of

the parameter space A and B are generated using MATLAB
routine sobolset.47 Matrices A and B are K × n dimensions,
where K is the sample size and n is the number of the
parameters varied. From matrix B, n matrices Ci (i = 1, ..., n) are
generated with all columns of B except the i-th, which is taken
from matrix A. Then the model is evaluated for all the
parameter sets in matrices A, B, and Ci (i.e., K·(n + 2) times)
and the outputs of interest yA, yB, and yCi (i.e., serine
concentration) are used to calculate the first-order or individual
Si
ind and total sensitivity estimates Si

T based on the following
equations:
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The interaction indices, Si
int are then calculated as the

difference between the total and the individual indices: Si
int = Si

T

− Si
ind.

In our model, all parameters of the genetic circuit (n = 13)
were varied between 0.1× and 10× of their nominal values.
Convergence of the GSA estimates was achieved when the
number of model evaluations was greater than 8000, therefore
K = 8000 was used for the results presented here. The total
number of model evaluations in Saltelli’s implementation is
K·(n + 2) = 120,000. The model evaluation step was
anticipated to be the most time-consuming, and therefore we
parallelized the model evaluation over 15 different processors
(i.e., n + 2) and the results were obtained within 2 days.
Analysis of the Most Sensitive Parameters. Once we

identified that there were three parameters with total sensitivity
indices higher than 0.1, we evaluated the effect of these
parameters on important variables of the bioprocess such as
productivity, yield, titer, batch, and switching time. Productivity
and yield were calculated at the end of the batch using the
following equations:

= =productivity
serine produced

batch time
mM serine

h (13)

= =yield
serine produced

glucose consumed
mM serine

mM glucose (14)

Batch time was estimated as the time at which glucose was
fully consumed and switching time as the time at which the
manipulated fluxes reached 5% of their initial values.
To visualize the results, we separately varied two (three

possible pairs) and three parameters at a time over a 25-point
grid in each dimension and plotted the five variables of interest,
while keeping all other parameters of the genetic circuit at their
nominal values. Here, we varied the parameters over a range
wider than the sensitivity analysis in order to examine all
possible behaviors and parameter regions.
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